AHEART April 47/4
نویسنده
چکیده
Landesberg, Amir, and Samuel Sideman. Force-velocity relationship and biochemical-to-mechanical energy conversion by the sarcomere. Am J Physiol Heart Circ Physiol 278: H1274–H1284, 2000.—The intracellular control mechanism leading to the well-known linear relationship between energy consumption by the sarcomere and the generated mechanical energy is analyzed here by coupling calcium kinetics with cross-bridge cycling. A key element in the control of the biochemical-to-mechanical energy conversion is the effect of filament sliding velocity on cross-bridge cycling. Our earlier studies have established the existence of a negative mechanical feedback mechanism whereby the rate of cross-bridge turnover from the strong, force-generating conformation to the weak, non-force-generating conformation is a linear function of the filament sliding velocity. This feedback allows the analytic derivation of the experimentally established Hill’s equation for the force-velocity relationship. Moreover, it allows us to derive the transient length response to load clamps and the transient force response to sarcomere shortening at constant velocity. The results are in agreement with experimental studies. The mechanical feedback regulates the generated power, maintains the linear relationship between energy liberated by the actomyosin-ATPase and the generated mechanical energy, and determines the efficiency of biochemical-to-mechanical energy conversion. The mechanical feedback defines three elements of the mechanical energy: 1) external work done; 2) pseudopotential energy, required for cross-bridge recruitment; and 3) energy dissipation caused by the viscoelastic property of the cross bridge. The last two elements dissipate as heat.
منابع مشابه
AHEART April 47/4
Munzenmaier, Diane H., and David R. Harder. Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. Am J Physiol Heart Circ Physiol 278: H1163–H1167, 2000.—Cerebral microvascular endothelial cells (CMVEC) form tubes when cocultured with astrocytes (AS). Therefore, it appears that AS may be important in mediating angiogenesis in the brain. We ...
متن کاملAHEART April 47/4
Wang, Yan, and Yoram Rudy. Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism. Am J Physiol Heart Circ Physiol 278: H1019–H1029, 2000.—Heterogeneity of myocardial structure and membrane excitability is accentuated by pathology and remodeling. In this study, a detailed model of the ventricular myocyte in a multicellular fiber was used t...
متن کاملAHEART February 47/2
DAVID FULTON,1 ANDREAS PAPAPETROPOULOS,1 XIAOPING ZHANG,2 JOHN D. CATRAVAS,3 THOMAS H. HINTZE,2 AND WILLIAM C. SESSA1 1Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812; 2Department of Physiology, New York Medical College, Valhalla, New York 10595; and 3Vascular Biology Center and Department of Pharmacology and...
متن کاملAHEART April 47/4
Kuoppala, Antti, Ken A. Lindstedt, Juhani Saarinen, Petri T. Kovanen, and Jorma O. Kokkonen. Inactivation of bradykinin by angiotensin-converting enzyme and by carboxypeptidase N in human plasma. Am J Physiol Heart Circ Physiol 278: H1069–H1074, 2000.—Because bradykinin (BK) appears to have cardioprotective effects ranging from improved hemodynamics to antiproliferative effects, inhibition of B...
متن کاملAHEART April 47/4
Frame, Mary D. Increased flow precedes remote arteriolar dilations for some microapplied agonists. Am J Physiol Heart Circ Physiol 278: H1186–H1195, 2000.—This study asks which occurs first in time for remote responses: a dilation or a remote change in flow. Arteriolar diameter (,20 μm) and fluorescently labeled red blood cell (RBC) velocity were measured in the cremaster muscle of anesthetized...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000